Discussion Problems 5

Problem One: Nonregular Languages

Let $L=\left\{w \in\{0,1,2\}^{*} \mid w\right.$ contains the same number of copies of the substrings 01 and 10$\}$. This language is similar to the one in Problem Set Five, except that the alphabet is now $\{0,1,2\}$ instead of $\{0,1\}$.

Prove that L is not a regular language. This shows that whether a language is regular or not might depend on what the alphabet of the language is.

Problem Two: Designing CFGs

Below are a list of alphabets and languages over those alphabets. For each language, design a context-free grammar that generates that language.
i. Let $\Sigma=\{\mathbf{p}, \wedge, \mathrm{V}, \neg, \rightarrow, \leftrightarrow,(), \mathrm{T},, \perp\}$ and let $P L=\left\{w \in \Sigma^{*} \mid w\right.$ is a legal propositional logic formula using just the variable $p\}$. Write a CFG for $P L$.
ii. Let $\Sigma=\{0,1\}$ and consider the regular expression $R=(0 \mid(10) *) * \mid 10 *$. Write a CFG G such that $\mathscr{L}(R)=\mathscr{L}(G)$.

Problem Three: Uncertainty about Ambiguity

In this question, you'll explore some properties of ambiguous grammars. Consider the language following language defined over the alphabet $\Sigma=\{1, \geq\}$

$$
G E=\left\{\mathbf{1}^{n} \geq \mathbf{1}^{m} \mid n \geq m\right\}
$$

Here is one possible context-free grammar for $G E$:

$$
\mathrm{S} \rightarrow 1 \mathrm{~S}|1 \mathrm{~S} 1| \geq
$$

i. Show that this grammar is ambiguous.
ii. Find a different grammar for $G E$ that is unambiguous. Briefly explain, but do not formally prove, why your grammar is unambiguous.

